
As you’ll have seen from the last
issue’s cover, the 32-bit

version of Delphi is almost with us.
This month’s Delphi Internals
column is devoted to a discussion
of 32-bit issues. In particular, we’ll
be concentrating on how you can
smooth the transition to 32-bits.
Interestingly, if you want to start
programming in 32-bits, it’s possi-
ble to start now. If you can’t wait to
get started, we’ll be looking at
some clever public domain code
which lets you do just that.

There are a number of different
ways in which you can smooth the
transition from 32-bits. Bear in
mind that Delphi32 is still in the
beta test stage as I write this, so it’s
possible some things may change
in the final release!

Using The Right Data Types
One of the most important changes
you’ll find in Delphi32 is support
for Unicode. Today, there is a
heavy emphasis on building
support for foreign languages into
your application. Unfortunately,
when you look at all the world’s
languages together, there are far
too many symbols to be repre-
sented with the 256 available
“slots” in the ASCII character table.
In fact some languages (Chinese
being a notable example), have
hundreds, possibly thousands, of
special symbols that are specific to
that language alone.

To cater for situations like this,
Windows NT supports Unicode, a
new 16-bit character format that
encompasses many different
languages and character sets. If the
high-order byte of this ‘wide
character’ is zero, the low-order
byte contains an ANSI character.

There are now three different
char types which are available:
➣ ANSIChar This is always one

byte, just like the Char type in
previous versions of Delphi.

➣ Char The same as ANSIChar. At
some point in the future, Char
might be equated to WideChar.

➣ WideChar Always 16-bits wide
for full Unicode support.

If Char becomes equated to
WideChar at some point, it could
cause you a lot of grief if you’ve
made assumptions in the past
about Char being one byte long.
Let’s face it, we’ve probably all
done this. Now would be a good
time to re-check your code! Any
time that you need to know the size
of a character, be sure to use
Sizeof(Char) rather than just
assuming a value of 1.

The same caveats apply to the
Integer type. This is a 16-bit
quantity under Delphi 1.0x and
32-bits under Delphi32. The same is
true of the Cardinal type which is
an unsigned 16-bit number in
Delphi 1.0x and an unsigned 32-bit
number in Delphi32. If you need to
use an integer value that’s always
16-bits wide, then use either
SmallInt or Word according to
whether it needs to be signed or
unsigned, respectively.

Just as characters can poten-
tially be 32-bits wide, Pascal strings
can now potentially consist of
characters that are 32-bits wide. To
accommodate this, a number of

new string types have been intro-
duced. These are summarised in
Figure 1.

In the 32-bit version of Delphi, a
string can now potentially be of
indefinite length. Such strings
(so-called “long strings”) are
dynamically allocated on the heap.
When you alter the length of such
a string, Delphi will (behind the
scenes) re-allocate the memory
being used. Like PChars, long
strings are null terminated, so you
can use them wherever you might
pass a PChar to a Windows API call
(for example). Because it would be
inefficient to repeatedly perform
memory allocation each time you
add a character to the end of a long
string, Delphi32 provides a new
routine called SetLength which
allocates memory for the string.

There is also a new compiler
directive, {H+} or {H-} which deter-
mines whether the keyword String
is interpreted as a ShortString or
an AnsiString respectively. The
latter interpretation is the default
and all the components in Delphi32
use long strings (but not, currently,
WideStrings).

No Low Level Assumptions
I’ve seen it suggested that a
program which contains 16-bit

Delphi Internals:
Moving Up To 32-Bits
by Dave Jewell

Type Meaning

AnsiString A dynamically allocated string of variable length,
also called a “long string”. Each element is one
byte long.

ShortString A non-dynamically allocated string with a maximum
length of 255 characters. Exactly equivalent to
String in Delphi 1.0x. Each character element is
one byte long.

String Either a ShortString or an AnsiString, depending on
the value of the $H compiler directive.

WideString A long string, with each element being of
type WideChar.

➤ Figure 1 New string types

32 The Delphi Magazine Issue 4

inline assembler code won’t work
properly under the new 32-bit
development system. This may or
may not be the case – it really
depends on exactly what the 16-bit
assembler code gets up to. It is
perfectly legal (from the proces-
sor’s point of view) to manipulate
16-bit registers while running in
‘flat memory mode’. However, if
your assembler code makes too
many assumptions about the sort
of environment its running in, then
it will fall over.

One possible assumption
concerns stack layout. When doing
tricky things in assembler, it’s
tempting to modify parameters
‘in-situ’ on the stack. This simply
won’t work under Delphi32. Not
only are all the parameters
stretched to 32-bits (thus changing
the stack layout anyway), but more
importantly, Delphi32 uses a
completely different calling
convention to its 16-bit cousin. The
latter always pushes every
parameter on the stack. However,
as a performance optimisation,
Delphi32 will by default use the
EAX, EDX and ECX registers to pass
parameters to called routines. This
is a technique which high-perform-
ance C/C++ compilers such as
Watcom have used for some time.
Passing parameters in registers
speeds up performance by elimi-
nating stack operations which are
relatively slow. In cases where
more than three parameters are
passed, the extra parameters go
onto the stack in the usual way.

As a general rule, it’s probably a
good idea to avoid inline assembler
if at all possible. If you must use it,
then try to confine it to one specific
unit so as to minimise later porting
problems. Also, bear in mind that
the 32-bit version of Delphi will
create executables that run on
Windows NT – an operating system
which is inherently portable to
other non-Intel processor architec-
tures. Therefore, to maximise the
potential audience for your
product, try to make as few
assumptions as possible.

VCL Commitment
You’re probably getting fed up of
hearing me say this, but the single

most important thing you can do to
improve the portability of your
code is to stick to the VCL library
wherever possible. I have been
able to re-compile a number of my
Delphi programs for 32 bits – they
all re-compiled and worked
flawlessly, which left my head
several sizes larger than it was to
start with! I even re-compiled a
16-bit Delphi component of my
design and, once again, it worked
first time. The key to maximising
portability is to use VCL calls
rather than calling the Windows
API directly. This is particularly
true of Windows messages where
the message layout (the arrange-
ment of the wParam and lParam
fields) often differs widely between
the 16-bit and 32-versions). Use
VCL if at all possible!

And If You
Simply Can’t Wait...
This is all very well, but maybe you
can’t wait to start making use of all
those sexy new Windows 95 API
functions. You know, the ones that
are only available to 32-bit applica-
tions. Fortunately, there is a
solution and, even better, it won’t
cost you a penny! An enterprising
individual by the name of Christian
Ghisler has written a set of routines
(packaged as a Delphi unit) which
allow a 16-bit program to directly
call 32-bit routines in a DLL. Since
the Windows API is itself
DLL-based, this means you can call
the entire 32-bit API and any other
goodies such as (for example) the
new 32-bit Common Controls DLL.

Christian’s routines are entirely
public domain which means that
you can use them without restric-
tion in your own applications. His
work, in turn, is based upon the
work of a chap called Peter Golde,
who originally wrote a set of public
domain routines in the form of a
DLL so that 16-bit Visual Basic
programs could make calls down
to the 32-bit API. The routines,
together with complete source
code and a sample program, are
contained in a file called
CALL32NT.ZIP on the free disk
included with this issue.

So how does it work? The
CALL32NT code (which, despite the

name, works quite happily with
both NT and Windows 95) makes
use of the Generic Thunking
mechanism built into the 16-bit
Windows subsystem that’s present
in both NT and Windows 95. It’s not
essential to know how it works at
the nuts and bolts level, but we do
need to know how to use it.

To call a 32-bit function in your
16-bit application, you need to take
the following steps.

Firstly, add the unit name
CALL32NT to the Uses clause of the
unit you’re working with.

Next, you need to declare all the
32-bit functions you’re going to
use. This is how you might declare
the 32-bit PolyBezier routine:

var
 PolyBezier : function(
 hdc : longint;
 var points : tagPoint;
 count,id : Longint) :
 Longint;

Notice that this is a function vari-
able. In other words, PolyBezier is
effectively a pointer to a function of
the specified type. Additionally,
any parameters in the 32-bit
routine must be followed by a final
LongInt variable (which in this case
is called id). This step is very
important. You’ll also notice that
our PolyBezier routine has exactly
the same name as the target API
routine. In this case, there’s no
conflict because the PolyBezier
routine doesn’t exist in the 16-bit
WinProcs unit. In cases where there
is a conflict, (as is the case with
most of the API), if you use the
same name as an existing 16-bit
routine, then Pascal’s scoping
rules will ‘hide’ the original 16-bit
definition. If you want to be able to
call both the 16-bit and 32-bit
versions of, say, GetDC, then you’ll
have to invent a new name such as
GetDC32. In this case, your routine
declaration might look like this:

var
 GetDC32 : function(wnd,id :
 longint) : longint;

As before, don’t forget the extra id
parameter and notice that, in this
case, the routine expects a window

November 1995 The Delphi Magazine 33

handle. Since window handles are
32-bits wide in Win32, we’ve used a
LongInt as a place holder for the
handle. In Win32 all handles
become 32-bits long and anything
that was an integer in the 16-bit API
likewise turns into a LongInt.

In the initialisation part of your
unit, all these function variables
must be pointed at a single,
common routine called Call32.
This routine is exported by the
CALL32NT unit. You’d simply set up
the above two function variables
like this:

PolyBezier := @Call32;
GetDC32 := @Call32;

This step is very important – for
obvious reasons! If you call
through a function variable that
hasn’t been initialised, then your
program will crash and burn in a
spectacular manner.

The next job is to declare a
uniquely named LongInt identifier
that’s associated with each
required API routine. This is where
those extra id parameters come
into play. For the above two cases,
we might define them like this:

var
 id_PolyBezier : LongInt;
 id_GetDC32 : LongInt;

The last step (you’ll be relieved to
hear!) is to initialise these variables
by calling the Declare32 routine.
Again, this is another function
exported by the CALL32NT unit. For
the two examples here, we’d do
something like this:

id_PolyBezier :=
 Declare32(’PolyBezier,
 ’gdi32’, ’ipi’);
id_GetDC32 :=
 Declare32(’GetDC’,
 ’user32’, ’w’);

This code goes in the initialisation
part of your unit along with the
other initialisation previously
described. The first parameter to
the Declare32 routine is the name of
the 32-bit API routine you’re target-
ing. The Declare32 routine will
expect to find this routine in the
specified DLL (named as the

second parameter) so you must
take care to get this right. Christian
reckons that the first parameter is
case sensitive so be sure to get this
right as well. The third parameter
specifies the number and type of
parameters expected by the
routine. This information is used
by the CALL32NT routines to push
the appropriate parameters on the
stack. For the PolyBezier routine,
we’ve got a 32-bit integer (or
handle), followed by a pointer,
followed by another 32-bit integer.

The ’w’ specifier (used in the
second call, above) is rather
special. Normally, when you pass a
window handle to a Win32 routine,
it’s expected that you’ll pass a
32-bit window handle. However, as
an added convenience, the
CALL32NT routine will allow you to
pass 16-bit window handles. These
window handles are then
converted to the equivalent 32-bit
window handle inside the unit. It’s
quite interesting to see how this is
done: first a 16-bit SetCapture is
used to set the window which
receives the capture, and then a
32-bit GetCapture is used to read
back the equivalent 32-bit handle.
OK, so it’s a kludge but it’s a
cunning one and it works!

All the foregoing may sound
complex, but it’s actually only a few
minutes work to set up and it’s a
great way to access 32-bit API
routines from within 16-bit Delphi.

If you want to start using this tech-
nique now, I’d suggest that you use
{$IFDEF} constructs to organise
your code in such a way that you
can easily remove the CALL32NT
stuff once you get your hands on
the ‘real’ 32-bit compiler.

As proof of the pudding, take a
look at Figure 2. This is a 16-bit
Delphi application running under
Windows 95 and calling the
PolyBezier routine: something that
a 16-bit program can’t normally do.

The complete source code of the
Delphi program which calls the
PolyBezier routine is on the disk, as
file TESTW32A.PAS. You’ll find that
this code differs somewhat from
that in the CALL32NT.ZIP file (in file
TESTW32.PAS). Christian’s code
performed all its drawing inside
the Form1.FormCreate method. I
thought this was not really the
proper Delphi way of doing things
so I rewrote the code, using a Timer
to initiate bezier drawing at regular
intervals.

Dave Jewell is a freelance consult-
ant, programmer and technical
journalist specialising in systems
level DOS and Windows work. He
is the author of Instant Delphi
published by Wrox Press. You can
contact Dave on the internet as
djewell@cix.compulink.co.uk

➤ Figure 2 The proof of the pudding...

34 The Delphi Magazine Issue 4

	Using the Right Data Types
	Low Level Assumptions
	And If You Simply Can't Wait..

